
1

Bayesian programming and
reinforcement learning in stochastic multiagent systems

Matheus Vieira Portela∗, Guilherme Novaes Ramos†

University of Brası́lia
∗matheus.portela@aluno.unb.br, †gnramos@unb.br

Abstract—Intelligent agents act based on sensor measurements
in order to fulfill their goals. When the environment is dynamic,
such as a multiagent system, agents must adapt its actions selection
processes to reflect the ever changing system state since behaviors that
previously were considered the best choice may becomes sub-optimal.
The problem is even greater when stochasticity is taken into account,
since the environment true state is unknown to the agents. This work
proposes a learning algorithm for stochastic multiagent systems, in
which Bayesian programming is used for state estimation and Q-
learning with function approximation provides learning capabilities
so as agents can select the appropriate behaviors. An experimental
setup to evaluate the effectiveness of this approach using electronic
games is described, as well as the preliminary results.

Index Terms—Artificial Intelligence, Multiagent System, Bayesian
Programming, Reinforcement Learning, Q-learning, Function
Approximation, Predator-pursuit

I. INTRODUCTION

A major interest in Artificial Intelligence (AI) is creating intelligent
agents that can perform real-world tasks. To this end, Bayesian
inference (BI) has shown successful results even in highly noisy
environments [1] and Bayesian Programming (BP) provides a
generic approach for modeling and decision-taking based on BI [2].

An agent can be defined as an entity capable of acting and sensing
in an environment in order to maximize a performance measure-
ment [3]. A Multiagent System (MAS) is inherently dynamic, and
agents are expected to adapt their actions based on previous expe-
riences accumulated by interaction [4]. A method suited to MASs is
Reinforcement Learning (RL), in which agents learn from interac-
tion which actions yield higher numeric rewards [5]. A control frame-
work using behaviors, pre-programmed sequences of actions, can be
used by agents, sometime even accelerating the learning process [6].

This work approaches the problem of creating agents that can learn
to select the best behaviors in cooperative MAS where stochasticity
is present, and is organized as follows. Section II presents previous
work with points in common with the work here developed. Section
III summarizes the Bayesian programming theory, and Section IV
discusses reinforcement learning. Section V describes the algorithm
proposed in this paper using these. Finally, Section VI explains
the validation experiments that will be conducted to verify the
algorithm’s performance.

II. RELATED WORK

During the past few decades, several methodologies have
been proposed to create computational systems that deal with
uncertainties in order to solve real-world problems. Using
Probabilistic Graphical Models, computers can reach meaningful
conclusions in stochastic environments by representing the system
with probabilistic models and taking into account the most probable
cases [1]. Another generic framework, Bayesian Programming
incorporates uncertainty in the design of intelligent agents, besides
providing efficient computation by using conditional independence
assumptions [7]. It must be noticed that most of these approaches
were initially developed for a single agent system and do not take
into account MAS specificities and challenges.

Work in MAS were stimulated by the modern cloud computing
infrastructure created by distributing processing across multiple ma-
chines connected by networks [8]. State-of-the-art MAS algorithms
consider computers to be individuals capable of sensing and acting
autonomously [3], but not necessarily learning agents. Multiagent
learning has been studied considering particularities for several
scenarios, containing or not elements such as competition, commu-
nication, and heterogeneity [9]. Work has been done to investigate
differences in independent and cooperative learning [10]. Further
studies consider learning in behavior-based systems [11] and usage
of game-theory for reinforcement learning in competitive MAS [12].

An specific case of MAS research, predator-pursuit problems have
been studied under the light of two techniques: reinforcement
learning [9] and evolutionary computing [13][14].

III. BAYESIAN PROGRAMMING

Bayesian Programming is a framework to develop intelligent sys-
tems using Bayesian inference only. The mathematic formalism de-
veloped for BP is generic enough to reinterpret, under its light, clas-
sical probabilistic techniques such as Bayesian networks, Bayesian
filters, Markov hidden models, Kalman filter, and particle filter [2].

A. Bayesian Programming Fundamentals

The fundamental element in BP is the logical proposition: a
hypothesis a that can be either true or false. Probability values are
attributed to propositions to deal with uncertainties. For instance,
P(a) = 0.9 means the proposition a has 90% chance of being
true [7]. It is important to notice that all propositions depend on

2

the designer’s previous knowledge of the system, represented by
π. Therefore, proposition probabilities are always conditioned on
π, denoted by P(a|π) [2].

The concept of discrete variables is also important in BP: a setX of
mutually exclusive and exhaustive propositions, i.e., xi∧xj is false
for i 6=j and at least one proposition inX is true. The probability of
X is defined as the conjunction probability for all of its propositions.

Bayesian inference rules, such as conjunction (1), normalization
(2), and marginalization (3), calculate unknown propositions and
variables probabilities based on other known probabilities [2].

P(x∧y|π)=P(x|π)·P(y|x∧π)=P(y|π)·P(x|y∧π) (1)

P(x|π)+P(¬x|π)=1 (2)∑
X

P(X∧Y |π)=P(Y |π) (3)

B. Bayesian Program Elements

Using discrete variables, a Bayesian program is a mathematical
procedure to specify a family of probability distributions in order to
control agents to execute complex tasks [2]. Any Bayesian program
contains two parts: a description and a question.

The description is the joint probability distribution of all pertinent
variables {X1, X2, ... , Xn} using previous knowledge (π) and
experimental data (δ) such as presented in (4) [2]. Usually, it is
difficult to directly calculate the description, requiring the system
designer to apply conditional independence hypotheses in order to
reduce its complexity [7].

P(X1∧X2∧...∧Xn|δ∧π) (4)

The second part of a Bayesian program, the question, is a probability
distribution that is calculated using the description. First, it is
necessary to split the description variables into three sets: S,
representing the variables whose probabilities are calculated,K, as
the variables that are observable, and U , as the unknown variables.
Then, the question is mathematically described by (5) [7].

P(S|K∧δ∧π)=
∑
UP(S∧K∧U |δ∧π)∑
U,SP(S∧K∧U |δ∧π

(5)

For instance, a probabilistic question that estimates the agent
state S based on its measurements Z and actions U is defined as
P(S|Z∧U ∧π). Afterwards, this estimation can feed other parts
of the intelligent system, such as action selection.

IV. REINFORCEMENT LEARNING

In RL problems, an agent can sense its surroundings and act to
modify the state of the environment [5]. However, the agent does
not know which action yields the best performance in the current
state. The only feedback available is a numeric value, the reward
r, given by the environment after the execution of an action [5].
Therefore, the agent must learn, from previous experiences, which
actions maximize future rewards.

Based on this idea, a value function V (s) returns the amount of
reward an agent expects to receive starting from the current state
and is used for action selection. Nevertheless, this function is
not directly observable and needs to be estimated on all received
rewards in the agent’s history [5].

The agent’s policy π maps environment states to actions and may
be implemented as either state-action tables, simple functions, or
complex search processes [5]. During policy design, it is important
to consider the trade-off between exploitation and exploration. The
former selects the best estimated action, improving performance.
The latter uses sub-optimal actions to collect information that may
lead the agent to receive higher rewards in the long run [5].

A. Q-learning

Among available RL algorithms, Q-learning is a popular off-policy,
model-free reinforcement learning algorithm used to control agents
by iteratively estimating the values Q(st,at) of state-action pairs
based on the last received reward [5]. However, the classical
Q-learning cannot be applied in continuous environments due to
an infinite number of state-action pairs. In this situation, it is usual
to apply function approximation methods to estimateQ(st,at).

In linear approximation, features from the current
state are selected, composing a feature column-vector
~φ(s) = [φ1(s),φ2(s),...,φn(s)]

T , where 0 ≤ φi(s, b) ≤ 1
indicates the probability of the i-th feature. A parameters vector
~θ(s) of same dimension is defined, where θi indicates the relevance
of the feature φi(s).Q(st,at) is then estimated by (6) [15].

Q(st,at)=~θ
T~φ(st)=

N∑
i=1

θiφi(st) (6)

Learning occurs by updating the parameter vector according to
some rule [15]. Usually, gradient descent is used [15] as shown
in (7) where δ = rt + γmaxa Q(st, a) − Q(st−1, at−1) and
∇~θQ(st,at)=~φ(st).

~θ←~θ+αδ∇~θQ(st,at) (7)

V. PROPOSED ALGORITHM

This work presents an algorithm that allows multiple agents to learn
to select behaviors in stochastic MAS. It assumes all agents exist in a
bi-dimensional environment where they can go either North, South,
East, West, or remain in the same position. Moreover, agents have
sensors to measure distances and directions in respect to each other.

The algorithm has three parts: environment state estimation,
behavior selection, and action selection. ThoughN agents can exist
in the environment, each one will use the same algorithm, thus the
following description assumes the index 1 to be a reference to the
learning agent itself.

A. State Estimation

An agent must track the current environment state S (consisting
of distances Sdi and directions Sθi to every other agent), the

3

measurements variable Z (composed by the measured distances
Zdi and directions Zθi to every other agent), and its action U . All
these variables change throughout time, these transitions being
denoted by the suffixX0:t=X0∧X1∧...∧Xt.

The description of this Bayesian program, therefore, is:

P(S0:t∧Z0:t∧U0:t|π) (8)

By applying the conjunction rule, the description is re-stated:

P(S0:t∧Z0:t∧U0:t|π)=
P(St∧Zt∧Ut|S0:t−1∧Z0:t−1∧U0:t−1∧π)·

P(S0:t−1∧Z0:t−1∧U0:t−1|π) (9)

This is not trivially computed since it depends on the variables’
entire history. However, by considering the first-order Markov
assumption, the probability of a variable at time t becomes
independent of its history if the variable’s value at time t− 1 is
known [16]. (9) is then simplified to:

P(S0:t∧Z0:t∧U0:t|π)=
P(St∧Zt∧Ut|St−1∧Zt−1∧Ut−1π)·

P(S0:t−1∧Z0:t−1∧U0:t−1|π) (10)

The description (10) can be re-written to (11) to highlight
the fact that estimating the description is an iterative process
that depends on two factors: an initial probability distribution
P(S0 ∧ Z0 ∧ U0|π) and a transition probability distribution
P(Sj∧Zj∧Uj|Sj−1∧Zj−1∧Uj−1π).

P(S0:t∧Z0:t∧U0:t|π)=

P(S0∧Z0∧U0|π)·
t∏
j=1

P(Sj∧Zj∧Uj|Sj−1∧Zj−1∧Uj−1π)

(11)

The initial condition represents the system designer’s knowledge
on the state of the environment when the program starts executing.
It is common to initialize it as a uniform distribution, representing
that no knowledge is assumed [7].

The transition distribution can be further simplified by assuming
conditional independence. The state St depends only on the
previous state St−1 and the last executed action Ut−1, the
measurement Zt depends on the current state St, and the action Ut

is assumed to be independent from all variables since it is chosen
by the action selection algorithm.

P(St∧Zt∧Ut|St−1∧Zt−1∧Ut−1π)=

P(St|St−1∧Ut−1π)·P(Zt|Stπ)P(Ut|π) (12)

The same conditional independence rationale is applied to the
variables Sdi , Sθi , Zdi , and Zθi .

P(St|St−1∧Ut−1∧π)=P(Stdi|S
t−1
di
∧Ut−1∧π)·

P(Stθi|S
t−1
θi
∧Ut−1∧π) (13)

P(Zt|St∧π)=P(Ztdi|S
t
di∧π)·P(Z

t
θi|S

t
θi∧π) (14)

To complete the description, it is necessary to define the probabilistic
forms of P(Stdi|S

t−1
di
∧ Ut−1 ∧ π), P(Stθi|S

t−1
θi
∧ Ut−1 ∧ π),

P(Ztdi|S
t
di
∧π), P(Ztθi|S

t
θi
∧π), and P(Ut|π).

For the bi-dimensional environment, the agent’s coordinates (x,y)
are estimated relative toSt−1 after executing the actionUt−1. Using
the same procedure, it is possible to calculate the (xi,yi) relative
to the i-th agent. Therefore, (15) is the expected distance to the i-th
agent, after executing Ut−1, and (16) is the expected direction.

d=
√
(xi−x)2+(yi−y)2 (15)

θ=
yi−y
xi−x

(16)

P(Stdi|S
t−1
di

∧ Ut−1 ∧ π) is assumed to be a Gaussian
distribution centered in d with an arbitrary standard deviation
σ, which can be learned from experimental data δ. By analogy,
P(Stθi|S

t−1
θi
∧Ut−1∧π) is centered around θ.

P(Stdi|S
t−1
di
∧Ut−1∧π)=G(St−1

di
,Ut−1),µ=d,σ (17)

P(Stθi|S
t−1
θi
∧Ut−1∧π)=G(St−1

θi
∧Ut−1),µ=θ,σ (18)

Measurements, then, are Gaussian distributions around the estimated
state for distance and direction. The standard deviations σsd and
σsθ represent the quality of the distance and direction sensors.

P(Ztdi|S
t
di∧π)=G(S

t
di),µ=S

t
di,σ=σsd (19)

P(Ztθi|S
t
θi∧π)=G(S

t
θi),µ=S

t
θi,σ=σsθ (20)

The action is defined by the action selection algorithm, independent
from the Bayesian program, and described by an uniform
distribution.

P(Uti |π)=Uniform (21)

Finally, the Bayesian program’s description is finished and a
probabilistic question can be stated. In this work, the agent
needs an estimation of the world’s current state given its sensors’
measurements and its last action executed. Mathematically, (22)
represents the state estimation and can be calculated using (11) and
Bayesian inference rules.

P(St|Zt∧Ut−1∧π) (22)

B. Behavior selection

Typically, Q-learning is used to estimate state-action values and
then select actions [6]. In this work, however, Q-learning is
used for behavior selection, hence, it will estimate the values of
state-behavior pairs.

Since the agent exists in a bi-dimensional world, potentially a
continuous environment, the function approximation, which uses
a ε-greedy for exploration, is applied as:

~θ←~θ+αδ∇~θQ(st,bt)
δ=rt+γmaxaQ(st,b)−Q(st−1,bt−1)

∇~θQ(st,bt)=~φ(st)
(23)

4

C. Action selection

Behaviors allow different actions to be selected in the same state.
Therefore, it is required to define the rules that map state-behavior
pairs to actions. This could be done by a Bayesian program, or even
by sampling a probability distribution.

In this work, actions are selected by procedural algorithms. For
instance, a behavior can be programmed to return the action that
moves the agent closer to another one according to the probability
of the other agent’s estimated state.

VI. EXPERIMENTS

The presented algorithm will be evaluated by computational sim-
ulations with multiagent electronic games, considering a predator-
pursuit situation. The Pac-Man game simulator1 provides the neces-
sary features: a bi-dimensional environment, multiple agents with a
clear task, well defined actions, and a direct reward value extracted
from obtained points. In contrast to the game’s original goal of
moving the Pac-Man through the map, collecting food and avoiding
the ghosts, our experiments evaluate if the proposed algorithm can
make the ghosts learn the behaviors that lead to capturing the Pac-
Man with minimal score, characterizing a cooperative MAS.

The experiments are designed in two phases. The first part will eval-
uate the algorithm by analyzing whether the Pac-man’s performance
improves as a result of learning the proper behaviors. The second
part is to evaluate it in an actual cooperative MAS by verifying
whether the ghosts performance improves as a result of learning the
proper behaviors. Should the ghosts be capable of learning, the game
score is expected to be reduced compared to the scores generated
by the baseline agents initially implemented in the simulator.

Some preliminary experiments indicated that, under some
circumstances, Q-learning with function approximation might
diverge, i.e., the estimated parameters tend to infinity. This situation,
although rare, is mathematically sound [17]. Hence, it was necessary
to normalize the parameters vector at each learning iteration [15].

These experiments also demonstrated the relevance of giving
sufficient and correct information for the agent. Analyzing the
Pac-Man agent, it could only win games by having information on
ghosts and food distances, as well as Manhattan distance instead
of Euclidian distance. Should these features not be available, the
agent would not be able to reason how to fulfill its goal.

Finally, behavior algorithms are a critical part of agent, directly
impacting its performance, since agents can only learn which
behavior to execute, but not modify it on the fly.

VII. CONCLUSION

The development of learning agents is currently one of the most
exciting and challenging areas of study in Artificial Intelligence.
The problem becomes even harder when multiple learning agents
co-exist in the same environment, since it becomes stochastic as
an agent does not know the other agent’s actions in advance.

1Available at: http://ai.berkeley.edu/multiagent.html

This work provides one step in the direction of developing an
approach for multiple learning agents in bi-dimensional stochastic
environments. A theoretical algorithm is proposed where Bayesian
Programming is used to deal with uncertainty, so agents become
more robust, and Q-learning with function approximation is used
for changing the agents behavior selection process, so it can provide
a bigger challenge and adapt to new situations.

Eletronic games are an excellent test bed for developing AI methods,
hence, the proposed algorithm is tested with the Pac-Man simulator
but, due to its general approach, could be applied in any problem
involving cooperative multiple agents in games or other fields.
Preliminary experiments reveal the critical parts of the system, as
well as conditions for creating agents that perform well.

REFERENCES

[1] D. Koller and N. Friedman, Probabilistic graphical models: principles and
techniques. MIT press, 2009.

[2] O. Lebeltel, P. Bessière, J. Diard, and E. Mazer, “Bayesian robot programming,”
Autonomous Robots, vol. 16, no. 1, pp. 49–79, 2004.

[3] G. Weiss, Multiagent systems: a modern approach to distributed artificial
intelligence. MIT Press, 1999.

[4] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach.
Prentice Hall, 2010.

[5] R. S. Sutton and A. G. Barto, Reinforcement learning: an introduction. MIT
press Cambridge, 1998.

[6] E. Martinson, A. Stoytchev, and R. C. Arkin, “Robot behavioral selection
using q-learning,” IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2002, 2001.

[7] C. M. C. E. C. Koike, “Bayesian approach to action selection and attention
focusing: an application in autonomous robot programming,” Ph.D. dissertation,
Institut National Polytechnique de Grenoble, 2005.

[8] Y. Shoham and K. Leyton-Brown, Multiagent systems: Algorithmic,
game-theoretic, and logical foundations. Cambridge University Press, 2008.

[9] P. Stone and M. Veloso, “Multiagent systems: A survey from a machine
learning perspective,” Autonomous Robots, vol. 8, no. 3, pp. 345–383, 2000.

[10] M. Tan, “Multi-agent reinforcement learning: Independent vs. cooperative
agents,” in Proceedings of the tenth international conference on machine
learning, 1993, pp. 330–337.

[11] M. J. Matarić, “Learning in behavior-based multi-robot systems: Policies,
models, and other agents,” Cognitive Systems Research, vol. 2, no. 1, pp.
81–93, 2001.

[12] M. L. Littman, “Markov games as a framework for multi-agent reinforcement
learning,” in Proceedings of the eleventh international conference on machine
learning, vol. 157, 1994, pp. 157–163.

[13] T. Haynes and S. Sen, “Evolving behavioral strategies in predators and prey,” in
Adaption and learning in multi-agent systems. Springer, 1996, pp. 113–126.

[14] K.-C. Jim and C. L. Giles, “Talking helps: Evolving communicating agents
for the predator-prey pursuit problem,” artificial life, vol. 6, no. 3, pp. 237–254,
2000.

[15] M. Irodova and R. H. Sloan, “Reinforcement learning and function
approximation,” in FLAIRS Conference. AAAI, 2005, pp. 455–460.

[16] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT press, 2005.

[17] M. Fairbank and E. Alonso, “The divergence of reinforcement learning algo-
rithms with value-iteration and function approximation,” in Neural Networks
(IJCNN), The 2012 International Joint Conference on. IEEE, 2012, pp. 1–8.

